Webclass FocalLoss: def __init__(self, gamma, alpha=None): # 使用FocalLoss只需要设定以上两个参数,如果alpha=None,默认取值为1 self.alpha = alpha self.gamma = gamma def at(self, y): # alpha 参数, 根据FL的定义函数,正样本权重为self.alpha,负样本权重为1 - self.alpha if self.alpha is None: return np.ones_like(y) return np.where(y, self.alpha, 1 - self.alpha) def … WebFocal Loss. Focal Loss首次在目标检测框架RetinaNet中提出,RetinaNet可以参考. 目标检测论文笔记:RetinaNet. 它是对典型的交叉信息熵损失函数的改进,主要用于样本分类的不平衡问题。为了统一正负样本的损失函数表达式,首先做如下定义: p t = {p y = …
老哥,我们写的FocalLoss不是那个味!LightGBM自定义损失函数 …
Web6 Focal Loss 难易分样本数量不平衡 易知,单个易分样本的损失小于单个难分样本的损失。 如果易分样本的数量远远多于难分样本,则所有样本的损失可能会被大量易分样本的损失主导,导致难分样本无法得到充分学习。 Focal Loss考虑了难易分样本不平衡的问题 基于BCE Loss,引入modulating factor (1-p_t)^\gamma ,其中 1-p_t\in [0,1],\ \gamma\geq0 , … WebFocal Loss的提出源自图像领域中目标检测任务中样本数量不平衡性的问题,并且这里所谓的不平衡性跟平常理解的是有所区别的,它还强调了样本的难易性。尽管Focal Loss 始 … diamondhead ar 15 parts
Circle Loss: 一个基于对优化的统一视角-CVPR2024 - 知乎
Web\gamma 的取值和loss变化的关系图如下。 推荐场景 在推荐算法中,正负样本比例的差异也非常大,在我自己的数据集上使用Focal Loss会将AUC提升3%左右,而且可以替换负采样,使得模型不用负采样也能正常训练。 Web总结. Circle loss的思想还是根据相似得分来对其反向传播的权重进行动态调整,这点是和focal loss 是一样的,focal loss是根据分类的概率动态调整反向传播的权重的。 文中提到的Multi-Similarity loss 是在导数中动态调整权重,可以参考我写的另一篇文章. 参考 ^ a b c FaceNet: A Unified Embedding for Face Recognition and ... Web带入FocalLoss. 假设alpha = 0.25, gamma=2. 1 - 负样本 : 0.75*(1-0.95)^2 * 0.02227 *样本数(100000) = 0.00004176 * 100000 = 4.1756 2 - 正样本 : 0.25* (1-0.05)^2 * 1.30102 *样本数(10)= 0.29354264 * 10 … diamond head ar handguard